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Figure 1: Given a photo collection of a landmark scene under varying lighting, our method transfers the illumination between images from
different viewpoints, synthesizing images with new combinations of viewpoint and time of day.

Abstract

We present a method for transferring lighting across photographs of
a static scene. Our method takes as input a photo collection depict-
ing a scene under varying viewpoints and lighting conditions. We
cast lighting transfer as a colorization problem, where the trans-
fer of local illumination across images is guided by sparse corre-
spondences obtained through multi-view stereo. Instead of directly
propagating color, we learn local color transforms from correspond-
ing patches in pairs of images and propagate these transforms in
an edge-aware manner in regions with no correspondences. Our
color transforms model the large variability of appearance changes
in local regions of the scene, and are robust to missing or inaccu-
rate correspondences. The method is fully automatic and is able to
transfer strong shadows across images. We show applications of our
image relighting method, for browsing collections of photographs
with harmonized lighting and for generating synthetic timelapses.

Keywords: relighting, photo collection, time-lapse, image editing

Concepts: •Computing methodologies→ Image manipulation;
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1 Introduction

If there is one thing that can make or break a photograph, it is light-
ing. This is especially true for outdoor photography, as the appear-
ance of a scene changes dramatically with the time of day. In order
to capture the short, transient moments of interest, photographers
have to be present at the right place at the perfect time of day. A
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majority of photographs taken by casual users are captured in the
middle of the day, when lighting is not ideal. While photo edit-
ing software such as Photoshop and Lightroom enable after-the-fact
editing to some extent, achieving convincing manipulations such
as drastic changes in lighting requires significant time and effort,
along with talented artists.

In this paper, we propose an automatic technique for changing the
lighting in a photograph, given a photo collection depicting the
same scene under varying viewpoint and illumination. In order
to deal with the large variability of appearance changes in out-
door landmarks, we use local color transforms to model the color
variations for different parts of the scene. We cast lighting trans-
fer as a colorization problem, where the transfer of local illumi-
nation across images is guided by sparse correspondences obtained
through multi-view stereo. Instead of directly propagating color, we
learn local color transforms from corresponding patches in pairs of
images and propagate these transforms in an edge-aware manner in
regions with no correspondences. Our color transforms model the
large variability of appearance changes in local regions of the scene,
and are robust to missing or inaccurate correspondences. Our image
relighting method facilitates browsing collections of photographs
with harmonized lighting and for generating synthetic timelapses.

Our main contributions are as follows:

• We cast lighting transfer as a colorization problem, learning
local color transforms from correspondences and propagating
the transforms in an edge-aware manner, using pixel intensi-
ties in the source image as a guide.

• We introduce a confidence map to indicate the reliability of
propagated transforms, which helps to preserve the color of
objects that should not be modified, e.g. spurious people or
objects.

2 Related work

Color transfer. The objective of color transfer is to map the col-
ors of one example image to a given image. Global color transfer
methods such as [Reinhard et al. 2001; Pouli and Reinhard 2011;
Pitie et al. 2005] apply a global color mapping to reshape the color
distribution of the input image such that it approaches the color sta-
tistical properties of the reference. They work well in style transfer
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when the input and reference images depict semantically similar
scenes, but do not account for spatial layout of the scene. In com-
parison, our method uses local transforms to model the large vari-
ability of appearance changes in local regions of the scene, which
is able to transfer strong shadows.

Image relighting. Alternatively, some methods find correspon-
dences across images and transfer a source image using the learned
color changes. [Shih et al. 2013] successfully hallucinate dif-
ferent time-of-day images by learning color transformations from
time-lapse videos. A similar method by [Laffont et al. 2014] en-
ables drastic appearance transfer by observing color changes in the
database. However, both methods rely on the availability of images
of different appearance from the same webcam. While these image
pairs may be available for some scenes with a static camera, this
data does not exist in many cases. Our system targets a more gen-
eral case that does not need image pairs from a static viewpoint. It
relies on the vastly available images of the same scene from vari-
ous online photo communities. [Martin-Brualla et al. 2015] use a
simple but effective new temporal filtering approach to stabilize ap-
pearance, but it depends on the computed depthmap. [Laffont et al.
2012] show that intrinsic image decomposition can be used for il-
lumination transfer, but the extraction of consistent reflectance and
illumination layers is a challenging and computationally expensive
problem.

Colorization. Colorization is a computer-assisted process of
adding color to a monochrome image or movie. [Levin et al.
2004] use manually specified scribbles and propagate colors based
on pixel intensities. The image-guided propagation is based on a
simple premise that two neighboring pixels should have similar col-
ors if their intensities are similar. A related method is also used
in [An and Pellacini 2008], which propagates rough user edits for
spatially-varying image editing. [Liu et al. 2008] decompose image
into illumination and reflectance, and transfer color to grayscale
reflectance image using corresponding features. Inspired by these
approaches, we use image-guided propagation to propagate local
color transforms learned at sparse image pixels. We show a com-
parison of our transform propagation approach and the direct color
propagation method for the purpose of lighting transfer in Fig 3.

3 Method

We propose a method for transferring lighting across photographs
of a static scene. Our method takes as input a landmark scene photo
collection, which includes images of multiple views and under dif-
ferent lighting conditions. We first learn local transforms from
sparse correspondences obtained from photo collections. Then,
we propagate these transforms with an image-guided method in-
spired from image colorization. In order to detect potentially in-
accurate transforms, we introduce a confidence map to indicate re-
gions where colors are different from the correspondences.

Here is an overview of the pipeline of our approach, which consists
of four main parts:

1. Sparse correspondences from photo collection. (Section 3.1)

2. Learning local color transforms. (Section 3.2)

3. Propagation of local color transforms. (Section 3.3)

4. Detecting transform outliers. (Section 3.4)

We extend our method to enable lighting transfer from multiple tar-
get images in Section 3.5.

(a)	source

(b)	target

(c)	source	correspondences

(d)	target	correspondences (f)	relit	result

(e)	propagation	of	transforms

Figure 2: Given a pair or source and target images (a-b), our
method uses sparse correspondences (c-d) to learn local color
transforms, which are then propagated in an image-guided manner
(e) in regions with no correspondences.

3.1 Sparse correspondences from photo collections

Our method transfers lighting changes based on sparse correspon-
dences between images. We utilize photo collections of famous
landmark, which consist of images of the same scene of different
viewpoints and lighting conditions. There are two reasons why we
use photo collections. First, these collections with lots of lighting
variations provide good examples for our lighting transfer. Besides,
we can easily find sparse correspondences across pictures. We first
apply structure from motion [Wu et al. 2011] to estimate the param-
eters of cameras and then use patch-based multi-view stereo [Fu-
rukawa and Ponce 2010] to generate a 3D point cloud of the scene.
For each point, the algorithm also estimates a list of images where
it appears. The visible 3D points are projected to each image to
obtain correspondences.

3.2 Learning local color transforms

We learn color transforms from the correspondences between im-
ages. These color transfers model local color variations across a
pair of pictures of the same scene under varying lighting, and de-
pend on the scene geometry and incident lighting.

Given the sparse correspondences between the source image S and
target image T , we estimate local transforms [Shih et al. 2013]
which represent the color changes for the corresponding pixels in a
local neighborhood. We use a linear model [Laffont et al. 2014] to
represent the mappings in RGB color space:

argmin
Ak

‖vk(T )−Akvk(S)‖2F + γ ‖Ak −G‖2F (1)

Ak = (vk(T )vk(S)
T + γG)(vk(S)vk(S)

T + γId3)
−1 (2)

Here, k corresponds to a specific correspondence. We denote by
vk(S) the patch centered on pixel in the source image and by vk(T )
the corresponding patch in the target image. Both are represented as
3×N matrices in the RGB color space. G is a global linear matrix
estimated on the entire image (γ = 0.01), used for regularization.
The obtained linear transform is represented by a 3× 3 matrix Ak.

3.3 Propagation of local color transforms

We then propagate the transforms learned from correspondences
to other regions of the source image (Fig. 2). We use the image-
guided propagation algorithm introduced by [Levin et al. 2004],
which was originally designed to propagate colors to gray images.
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Figure 3: We show comparisons of our method to image warping by homography and naive propagation of color.

Here the transforms learned from correspondences are serving as
color scribbles in the colorization problem. Instead of propagating
the RGB pixel values, we propagate the color transforms estimated
in Section 3.2.

We wish to impose the constraint that in a very small neighborhood,
two pixels pj and pk are more likely to have similar transforms if
their color intensities are similar. We formalize this using a set of
weights for a pair of pixels pj and pk:

wjk ∝ e−‖rgb(j)−rgb(k)‖
2/2σ2

j (3)

where wjk is a weighting function that sums to one, large when the
RGB values of pixel pj is similar to that of pixel pk, and small when
the two RGB intensities are different. Given transforms Ak at a
sparse set of pixels pk (computed from Section 3.2), the set of local
transforms Aj for all pixels pj in regions with no correspondences
can be estimated with a least-squares minimization:

argmin
Aj

(
Aj −

∑
k

wjk Ak

)2

(4)

This global optimization problem yields a large, sparse system of
linear equations, which can be solved by standard methods. This
allows us to propagate sparse transforms to all pixels without cor-
respondences in image. All the Aj are optimized simultaneously.
We use the backslash operator in Matlab.

3.4 Detecting transform outliers

The propagated transforms might be inaccurate for regions in the
source image with very different texture from correspondences,
e.g., the spurious people and green leaves. To detect regions where
transforms are potentially less reliable, we introduce a confidence
map. The idea is if a source pixel’s color is not similar to any of the
correspondences in the source image, then its obtained transform
is less reliable, as their transforms are propagated from correspon-
dences with a different color.

C(p) ∝ −ln
( ∑
minimumK

‖rgb(p)− rgb(q)‖2
)

(5)

For each pixel p in the source image, we calculate its color differ-
ences with all correspondences q in the image. To avoid occasion-
ality, we sum up the minimum K differences and use the minus
natural logarithm of the sum as a confidence factor C(p). All fac-
tors are then normalized to [0, 1]. We find that a pixel only needs a
few neighboring constraints to get an appropriate transform. We use
K = 10 and set a threshold to detect possibly wrong transforms.
When applying color transforms, the detected regions remain un-
changed as their color in the source image.

3.5 Extending to multiple targets

We extend our method and enable lighting transfer with multiple
target images. More target images of the same lighting condition
provide more correspondences from different view points. We com-
bine the transforms of the same corresponding pixels in the source
image, and propagate using the same method in Section 3.3. We
make a comparison on a synthetic dataset between the single-target-
image method and multiple one. It shows that the multiple-target
method produces an output image more similar to the ground truth.

4 Results and comparisons

We apply our method on two types of data. First we show results
of our method for photo collections of famous landmarks. We then
apply our method to synthetic data which allows a comparison to
ground truth.

Internet photo collections. We utilize the datasets from [Laf-
font et al. 2012]. When applying transforms directly to the input
image, the noise existing in the input may be magnified. We use bi-
lateral filtering to decompose the input image into a detail layer and
a base layer, and learn and propagate the transforms based on the
base layer. We then apply the linear transforms to the base layer and
add back the detail layer to obtain the final result. Similar method
is used in [Shih et al. 2013].

Our method enables dramatic lighting changes between images.
Fig. 3 illustrates our results on several scenes, namely St.Basil, Ma-
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Figure 4: We illustrate that how our method can be used for harmonizing image collections of multiple views (top row) and hallucinating
image time-lapse (bottom row). The insets represent the source images.

narola and RizziHaus. Our method successfully relight the input
images, where the image warping based on homography and di-
rect propagation of pixel color fail. Homography is a projective
mapping between any two planes with the same center of projec-
tion. We estimate the homography based on pixel correspondences.
The propagation of pixel color uses code from [Levin et al. 2004].
In Fig. 4 we present that our method can be used for harmonized
multi-view image browsing and time-lapse hallucination of a single
view scenery.

Synthetic scene. We evaluate the effectiveness of our method
on the synthetic dataset of St.Basil [Laffont and Bazin 2015], which
contains rendered images from 3 different view points and under 30
lighting conditions. Comparing the result of our lighting transfer, to
the ground truth rendering from the same viewpoint with the same
lighting condition, quantitative evaluation shows that method using
multiple target images produce a more plausible result.

Performance. We use a 3.6 GHz Intel Core i7 CPU in this pa-
per. All images are resized to the width of 640 pixels. Our Matlab
implementation takes approximately 7s for learning and applying
color transforms and 23s for propagation of transforms.

5 Conclusion

In this paper we propose method to for transferring lighting across
photographs of a static scene. We take as input a photo collection
of a famous landmark from different viewpoints and under vary-
ing lighting conditions. We use multi-view stereo to reconstruct
3D points, and learn local color transforms from pixel correspon-
dences. The transforms are then propagated to other image regions
in an image-guided manner inspired by image colorization tech-
niques. We illustrate that our method can be used for harmonizing
image collections of multiple views and hallucinating image time-
lapse.
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